Mass at Zero and Small-Strike Implied Volatility Expansion in the SABR Model

Blanka Horvath
Imperial College London-ETH Zürich Workshop
March 4, 2015

Joint work with Archil Gulisashvili and Antoine Jacquier

Consider

$$
\begin{array}{ll}
\qquad \begin{array}{ll}
d X_{t}=Y_{t} X_{t}^{\beta} d W_{t}, & X_{0}=x_{0}>0, \\
d Y_{t} & =\nu Y_{t} d Z_{t},
\end{array} & Y_{0}=y_{0}>0, \\
d\langle Z, W\rangle_{t}=\rho d t, & \\
\nu>0, \rho \in[-1,1], \beta \in[0,1], \\
\text { and } W \text { and } Z \text { are Brownian motions on }\left(\Omega, \mathcal{F},\left(\mathcal{F}_{t}\right)_{t \geq 0}, \mathbb{P}\right) \text {. }
\end{array}
$$

The SABR Initial Value Problem

The geometric idea

Relate the SABR Kolmogorov equation

$$
\partial_{s} K_{X, Y}(s, x, y)=\frac{1}{2} \underbrace{y^{2}\left(x^{2 \beta} \partial_{x x}^{2}+2 \rho \nu x^{\beta} \partial_{x y}^{2}+\nu^{2} \partial_{y y}^{2}\right)}_{\mathcal{A}_{S A B A}(x, y)} K_{X, Y}(s, x, y)
$$

to a heat equation

$$
\partial_{s} K_{X, Y}^{g}(s, x, y)=\frac{1}{2} \Delta_{g(x, y)} K_{X, Y}^{g}(s, x, y)
$$

on a manifold with an appropriately chosen Riemannian metric g.

The Riemannian metric

Consider \mathcal{A} uniformly elliptic second order operator, $\xi^{i j}(x)$ highest order coefficients of \mathcal{A}, Matrix of coefficients $\equiv(x):=\left(\xi^{i j}(x)\right)_{i, j}$
$g_{i j}(x)$ coefficients of the inverse Ξ^{-1}. Then

Riemannian metric

$$
\sum_{i, j=1}^{n} g_{i j}(x) d x^{i} \otimes d x^{j}
$$

is then a symmetric covariant tensor field on the state space S, the pair (S, g) is a Riemannian manifold.

The SABR Initial Value Problem

Heat equation on a manifold

The operator $\mathcal{A}_{S A B R}$, of the SABR model, differs from the manifold's Laplace operator $\Delta_{g(x, y)}$ only by a lower order term $b(x, y) \partial_{x}$:

$$
\mathcal{A}_{S A B R}(x, y)+\underbrace{\nu^{2} y^{2} x^{2 \beta-1}}_{b(x, y)} \partial_{x}=\Delta_{g(x, y)}
$$

The regular perturbation

The following asymptotic relation holds for the fundamental solutions of the related PDEs

$$
K_{X, Y}(s, x, y)=\left(\operatorname{Id}+\lambda b(x, y) \partial_{x}\right) K_{X, Y}^{g}(s, x, y)+O\left(\lambda^{2}\right)
$$

for all $s>0$ and $X, Y, x, y>0$, where the expansion is in $\lambda=\epsilon s$.

Small-Time Asymptotics

For $\partial_{t} u=\frac{1}{2} \mathcal{A} u$, when \mathcal{A} is uniformly elliptic, we have the following short time asymptotic limit

Varadhan's Formula

$$
\lim _{t \rightarrow 0} t \log p_{t}\left(z_{1}, z_{2}\right)=-\frac{d\left(z_{1}, z_{2}\right)^{2}}{2}
$$

$p_{t}\left(z_{1}, z_{2}\right)$ denotes the fundamental solution of $\partial_{t} u=\frac{1}{2} \mathcal{A} u$, $d\left(z_{1}, z_{2}\right)$ the Riemannian distance from the metric $g_{i j}=(\equiv)_{i, j}^{-1}$.

The Geometric Viewpoint

Degeneracy at $x=0, y=0$.
The matrix of highest order coefficients of $\mathcal{A}_{\text {SABR }}$ is

$$
\Xi_{S A B R}(x, y)=\left(\begin{array}{cc}
y^{2} x^{2 \beta} & y^{2} \rho x^{\beta} \\
y^{2} \rho x^{\beta} & y^{2}
\end{array}\right) .
$$

Riemannian metric at $x=0, y=0$ not defined.

$$
g(x, y)=\left(\Xi_{S A B R}\right)^{-1}(x, y)=\left(\begin{array}{cc}
\frac{1}{\left(1-\rho^{2}\right) y^{2} x^{2} \beta} & \frac{-\rho}{\left(1-\rho^{2}\right) y^{2} x^{\beta}} \\
\frac{-1}{\left(1-\rho^{2}\right) y^{2} x^{\beta}} & \frac{1}{\left(1-\rho^{2}\right) y^{2}}
\end{array}\right) .
$$

Problem?

Varadhan's formula does not always fail when इ does not fulfill the uniform ellipticity condition

Normal SABR model: $\beta=0, \rho=0$

$$
\Xi_{S A B R}(x, y)=\left(\begin{array}{cc}
y^{2} & 0 \\
0 & y^{2}
\end{array}\right),
$$

for all $\left\{(x, y) \in \mathbb{R}^{2}: x, y>0\right\}$, in fact for all $\left\{(x, y) \in \mathbb{R}^{2}: y>0\right\}$.
The Riemannian metric is the well known Poincaré metric

$$
\frac{1}{y^{2}} d x \otimes d x+\frac{1}{y^{2}} d y \otimes d y
$$

Consider the SABR Formula (HLW)

$$
\begin{aligned}
& \sigma_{S A B R} \approx \frac{\alpha \log (x / K)}{\frac{x^{1-\beta}-K^{1-\beta}}{1-\beta}}\left(\frac{\zeta}{\hat{\xi}(\zeta)}\right) \\
&\left\{1+\left[\frac{2 \gamma_{2}-\gamma_{1}^{2}+x_{a v}^{-2}}{24} \alpha^{2} x^{2 \beta}+\frac{\rho \nu \alpha \gamma_{1} x_{a v}^{\beta}}{4}+\frac{\left(2-3 \rho^{2}\right) \nu^{2}}{24}\right] \epsilon^{2} T+\ldots\right\}
\end{aligned}
$$

Expansion for the implied volatility in $\epsilon=\nu T$

The degeneracy at $x=0$ matters.

Small-Strike Asymptotics

If $\mathbb{P}\left(X_{T} \leq K\right)-\mathbb{P}\left(X_{T}=0\right)=\mathcal{O}\left(K^{\varepsilon}\right)$ as $K \downarrow 0$, and X is a true martingale then

Small-Strike Expansion with Positive Mass (de Marco et al. '13)

$$
I_{T}(K)=\sqrt{\frac{2|\log K|}{T}}+\frac{\mathcal{N}^{-1}\left(\mathrm{~m}_{T}\right)}{\sqrt{T}}+\frac{\left(\mathcal{N}^{-1}\left(\mathrm{~m}_{T}\right)\right)^{2}}{2 \sqrt{2 T|\log K|}}+\Phi(K)
$$

$\mathrm{m}_{T}:=\mathbb{P}\left(X_{T}=0\right)$ is the mass at the origin,
\mathcal{N} the Gaussian cumulative distribution function,
$\Phi:(-\infty, 0) \rightarrow \mathbb{R}$ satisfies $\lim \sup _{K \downarrow 0} \sqrt{2 T|\log K| \mid}|(K)| \leq 1$.
See also Gulisashvili '15.

The Mass at Zero in the SABR Model

Uncorrelated case: decompose SABR by time-change

$$
\mathbb{P}\left(X_{t}=0\right)=\int_{0}^{\infty} \mathbb{P}\left(\widetilde{X}_{r}=0\right) \mathbb{P}\left(\int_{0}^{t} Y_{s}^{2} \mathrm{~d} s \in \mathrm{~d} r\right) \mathrm{d} r
$$

where the mass at zero for the CEV model \widetilde{X} is

$$
\mathbb{P}\left(\widetilde{X}_{r}=0\right)=1-\Gamma\left(\frac{1}{2(1-\beta)}, \frac{x_{0}^{2(1-\beta)}}{2 r(\beta-1)^{2}}\right),
$$

with $\Gamma(v, z) \equiv \Gamma(v)^{-1} \int_{0}^{z} u^{v-1} \mathrm{e}^{-u} \mathrm{~d} u$.
Tractable formula for the mass $\mathbb{P}\left(X_{t}=0\right)$?

The density of the time-change

$$
\mathbb{P}\left(\int_{0}^{t} Y_{s}^{2} \mathrm{~d} s \in \mathrm{~d} r\right)
$$

- familiar: appears when pricing Asian options
- related to the Hartman-Watson density
- highly oscillating expressions, double integral, ...
\Rightarrow Numerical difficulties

$$
=\frac{2^{1 / 4} \sqrt{\nu}}{r^{3 / 4}} \exp \left(-\frac{\nu^{2} t}{8}-\frac{1}{4 \nu^{2} r}\right) m_{2 \nu^{2} t}\left(-\frac{3}{4}, \frac{1}{4 \nu^{2} r}\right) \mathrm{d} r
$$

Small-time Asymptotics

Oscillating parts:

$$
\begin{aligned}
& m_{y}(\mu, z) \equiv \frac{8 z^{3 / 2} \Gamma\left(\mu+\frac{3}{2}\right) \mathrm{e}^{\frac{\pi^{2}}{4 y}}}{\pi \sqrt{2 \pi y}} \times \\
& \int_{0}^{\infty} \mathrm{e}^{-z \cosh (2 u)-\frac{1}{y} u^{2}} \mathrm{M}\left(-\mu, \frac{3}{2}, 2 z \sinh (u)^{2}\right) \sinh (2 u) \sin \left(\frac{\pi u}{y}\right) \mathrm{d} u
\end{aligned}
$$

M is the Kummer function:

$$
\mathrm{M}(a, b, x) \equiv 1+\sum_{k=1}^{\infty} \frac{a(a+1) \ldots(a+k-1) x^{k}}{b(b+1) \ldots(b+k-1) k!}
$$

Way out: Direct inverse Laplace transform approach inspired by Gerhold '11. \Rightarrow Obtain small-time asymptotics.

Large-time Asymptotics

$$
\begin{aligned}
& \lim _{t \uparrow \infty} \mathbb{P}\left(X_{t}=0\right) \\
& =1-\frac{y_{0}}{\nu \sqrt{2 \pi}} \int_{0}^{\infty} \Gamma\left(\frac{1}{2(1-\beta)}, \frac{x_{0}^{2(1-\beta)}}{2 r(\beta-1)^{2}}\right) r^{-3 / 2} \exp \left(-\frac{y_{0}^{2}}{2 \nu^{2} r}\right) \mathrm{d} r .
\end{aligned}
$$

Fairly regular \Rightarrow Numerics, asymptotic expansion

Accumulation of Mass in the SABR Model

Influence of the initial value x_{0} on the large-time mass at zero

with $\left(y_{0}, \nu\right)=(0.015,0.6)$
"not feeling the boundary" volatility process for these parameters fairly well-behaved

Accumulation of Mass in the SABR Model

Influence of the initial value x_{0} on the large-time mass at zero

with $\left(y_{0}, \nu\right)=(0.1,1)$

Accumulation of Mass in the SABR Model

Influence of the parameter β on the large-time mass at zero

with $\left(y_{0}, \nu\right)=(0.015,0.6)$

Accumulation of Mass in the SABR Model

Influence of the parameter β on the large-time mass at zero

$$
\text { with }\left(y_{0}, \nu\right)=(0.1,1)
$$

Application: Comparing Implied Volatilities

Recall de Marco et al. '13:

$$
\begin{equation*}
I_{T}(K)=\sqrt{\frac{2|\log K|}{T}}+\frac{\mathcal{N}^{-1}\left(\mathrm{~m}_{T}\right)}{\sqrt{T}}+\frac{\left(\mathcal{N}^{-1}\left(\mathrm{~m}_{T}\right)\right)^{2}}{2 \sqrt{2 T|\log K|}}+\Phi(K) \tag{1}
\end{equation*}
$$

- model independent
- by definition arbitrage-free
we plot the functions $k:=\log K \in \mathbb{R} \mapsto I_{T}\left(\mathrm{e}^{k}\right) \sqrt{T /|k|}$ we compare SABR formula (Obłój refinement) with (1) in order to avoid arbitrage, has to be bounded by $\sqrt{2}$

Application: Comparing Implied Volatilities

We plot $k \in \mathbb{R} \mapsto I_{T}\left(\mathrm{e}^{k}\right) \sqrt{T /|k|}$.
The black line marks the level $\sqrt{2}$.
Parameters are $\left(\nu, \beta, \rho, x_{0}, y_{0}, T\right)=(0.3,0,0,0.35,0.05,10)$
The large-time mass is equal to 28.3%

Application: Comparing Implied Volatilities

We plot $k \in \mathbb{R} \mapsto I_{T}\left(\mathrm{e}^{k}\right) \sqrt{T /|k|}$.
The black line marks the level $\sqrt{2}$.
Parameters are $\left(\nu, \beta, \rho, x_{0}, y_{0}, T\right)=(0.6,0.6,0,0.08,0.015,10)$
The large-time mass is equal to 3.1%

Correlated Case

We consider the associated heat equation

$$
\begin{array}{ll}
\mathrm{d} X_{t}=Y_{t} X_{t}^{\beta} \mathrm{d} W_{t}+\frac{\beta}{2} Y_{t}^{2} X_{t}^{2 \beta-1} \mathrm{~d} t, & X_{0}=x_{0}>0, \\
\mathrm{~d} Y_{t}=\nu Y_{t} \mathrm{~d} Z_{t}, & Y_{0}=y_{0}>0,
\end{array}
$$

$$
\mathrm{d}\langle Z, W\rangle_{t}=\rho \mathrm{d} t
$$

with $\nu>0, \rho \in(-1,1), \beta \in[0,1)$.
Particular interest in the cases $\beta=0$ and $\rho=0$.
See also: Hobson '10, Döring-H. '15.

Thank you for your attention!

